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Outline 

• Traditional experiments vs. validation experiments 
–  Validation hierarchy 
–  Existing validation databases 

• Characteristics of a validation experiment 

• Nondeterministic simulation of experiments 
–  Experimental uncertainties 
–  Model form uncertainty 

• Suggestions for the path forward 
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Traditional Experiments vs. 
Validation Experiments 

Goals of traditional experiments: 

1.   Improve the fundamental understanding of the physics: 
•  Ex: performance of new fuels; departure from nucleate boiling 

2.   Determine parameters in existing mathematical models: 
•  Ex: model calibration experiment for bubbly flows; model calibration 

experiment for crack propagation in fuels 

3.   Assess subsystem or complete system performance: 
•  Ex: loss of coolant experiment; plant safety performance during various 

subsystem failure and excitation scenarios 

•  Goal of a model validation experiment: 
–  An experiment that is designed and executed to quantitatively estimate a 

mathematical model’s ability to simulate a well characterized experiment. 

•  The customer of a model validation experiment is usually a model 
developer or computational analyst. 
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Validation Experiment Hierarchy 

(Ref: AIAA Guide, 1998) 
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Validation Hierarchy for Sub-cooled Boiling 

(Ref: Dinh, 2012) 

A validation 
hierarchy can 
be constructed 
at any level of 
physical process 
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Examples of Validation Databases 
Related to Nuclear Power 

• Organization for Economic Co-operation and Development/
Nuclear Energy Agency (OECD/NEA), International Fuel 
Performance Experiments (IFPE) Database 

• OECD/NEA Shielding Integral Benchmark Archive and 
Database (SINBAD) 

• OECD/NEA International Reactor Physics Benchmark 
Experiment Evaluation (IRPhE) Project 

• OECD/NEA Expert Group on Multi-Physics Experimental 
Data, Benchmark, and Validation (EGMPEBV), newly formed 

• Generation IV Materials Handbook database 

• Loss-of-Fluid Test (LOFT) database at INL 

• Proprietary or classified databases, e.g., Westinghouse 
Advanced Loop Testing, Bettis Atomic Power Laboratory, 
Knolls Atomic Power Laboratory, etc. 

6



Six Characteristics of a Validation Experiment 

1.   A validation experiment should be jointly designed and 
executed by experimentalists and computationalists: 
–  Close working relationship from inception to documentation 
–  Elimination of the typical competition between each 
–  Complete candor concerning strengths and weaknesses 

2.   A validation experiment should be designed to capture the 
relevant physics, all initial and boundary conditions, and all 
auxiliary data needed for a simulation: 
–  Computational simulation input data should be measured in the 

experiment and key modeling assumptions understood 
–  Characteristics and imperfections of the experimental facility 

should be measured and included in the simulation 

(Ref: Aeschliman and Oberkampf, 1998) 
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Characteristics of a Validation Experiment 
(continued) 

3.   A validation experiment should use any possible synergisms 
between experiment and computational approaches: 
–  Offset strengths and weaknesses of computation and experiment 
–  Use simulations of the “empty” facility to better understand the 

operation of the facility 
–  Use experimental data from the “empty” facility to calibrate 

certain model parameters 

4.   Independence between computational and experimental 
results should be maintained where possible: 

–  The flavor of a blind comparison should be maintained if possible 
–  All input data needed for the simulation should be measured and 

provided 
–  Once system response measurements are available to the 

analyst, calibration usually occurs 
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Characteristics of a Validation Experiment 
(continued) 

5.   A hierarchy of experimental measurements should be made 
which presents an increasing range of computational difficulty: 
–  Qualitative data (e.g., visualization) and quantitative data 
–  Functionals, local variables, derivatives of local variables 
–  Computational solution data should be processed in a manner similar to the 

experimental measurement data 

6.   Carefully employ experimental uncertainty analysis procedures 
to delineate and quantify random and correlated bias errors: 
–  Experimentalist should provide uncertainty estimates on system response 

data and input quantities needed by the code 
–  Use traditional or statistical design of experiments methods to estimate 

random and correlated bias errors in measurements 
–  If possible, conduct experiments using different diagnostic techniques or 

different experimental facilities 
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What is the Goal of a 
Model Validation Experiment? 

• Estimation of the model form uncertainty for the specific 
conditions and physics of the experiment 

• What makes this difficult? 
–  Measurement of all important model input data 
–  Estimation of response variability and measurement uncertainty 

• Measured input data characterizes: 
–  System geometry 
–  Initial conditions 
–  System physical parameters 
–  Boundary conditions 
–  System excitation 

• As a result, the experimentalist must: 
–  Measure and document model input and system response data 
–  Estimate and document experimental uncertainty on both model 

input data and system response data 
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Nondeterministic Simulation of Experiments 
• Computational simulation can be viewed as a mapping of 

input data to output data using the mathematical model 

• Because of missing data or variability of input data from the 
experiment, we must conduct non-deterministic simulations 

 M(SG, IC,PMP,BC,SE)→ SRQ
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Model Accuracy Assessment, 
Calibration and Prediction 

(from Oberkampf and Barone, 2006) 
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Example of a Validation Metric: 
Area Metric 

• The validation metric is defined to be the area between the 
CDF from the simulation and the empirical distribution 
function (EDF) from the experiment 

d(F,Sn ) = F(x) − Sn (x)
−∞

∞

∫ dx

Experimental 
Measurements, 
Sn(x) 

CDF from 
Simulation, F(x) 

Area d 

(Minkowski L1 metric) 

(Ref: Ferson et al, 2008) 
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What is the Impact of 
Missing Input Data from the Experiment? 

• Unmeasured or undocumented input data leads to either: 
–  Calibration or tuning of parameters in the model 
–  Increased uncertainty in the predicted output. This does not allow 

us to critically assess the predictive accuracy of the model. 

(Ref: Oberkampf and Roy, 2010) 
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Suggestions for the Path Forward 
• Evaluation of existing experimental databases for completeness 

and documentation of: 
–  Input data needed for simulation 
–  Estimation of experimental uncertainty on both input and output data 
–  Existence of multiple experimental realizations or different facilities 

• Which perspective is more constructive for planning new 
validation experiments? 

• Whichever perspective is used, conduct simulations of planned 
experiments to determine the most important input data to be 
measured, i.e., conduct sensitivity analyses 

•  Improve the understanding of recommended characteristics of 
validation experiments among experimentalists and analysts 

Physical processes in need 
of improved modeling 

Applications areas in need 
of improved understanding versus 
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